Secretion and Endocytosis in Pollen Tubes: Models of Tip Growth in the Spot Light

نویسندگان

  • Gleb Grebnev
  • Maria Ntefidou
  • Benedikt Kost
چکیده

Pollen tube tip growth is a widely used model ideally suited to study cellular processes underlying polarized cell expansion. Local secretion supplying material for plasma membrane (PM) and cell wall extension is essential for this process. Cell wall biogenesis requires fusion of secretory vesicles with the PM at an about 10× higher rate than PM extension. Excess material is therefore incorporated into the PM, which needs to be reinternalized through endocytosis. The classical model of tip growth proposes that exocytosis occurs at the apex and that newly incorporated PM material is transported to adjacent lateral regions, where excess material is endocytically recycled. This model was recently challenged based on studies indicating that lateral exocytosis may be balanced by apical endocytosis. This review provides an overview of published data pertaining to exocytosis, endocytosis and vesicular trafficking in pollen tubes. Its key aim is to present classical and alternative models of tip growth in the light of available experimental data. By necessity, the review focusses on pollen tubes of angiosperm models (Nicotiana tabacum, Arabidopsis, Lilium longiflorum), which have been studied far more extensively and grow much faster than structurally strikingly different gymnosperm pollen tubes. Only major transport pathways are considered, which substantially contribute to the mass-flow of membrane material at the pollen tube tip. Growth oscillation, which may be displayed in particular by fast-growing pollen tubes, are not discussed as their influence on the spatial organization of apical membrane traffic is not understood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of brefeldin A on pollen germination and tube growth. Antagonistic effects on endocytosis and secretion.

We assessed the effects of brefeldin A (BFA) on pollen tube development in Picea meyeri using fluorescent marker FM4-64 as a membrane-inserted endocytic/recycling marker, together with ultrastructural studies and Fourier transform infrared analysis of cell walls. BFA inhibited pollen germination and pollen tube growth, causing morphological changes in a dose-dependent manner, and pollen tube ti...

متن کامل

Endocytic Pathways and Recycling in Growing Pollen Tubes.

Pollen tube growth is based on transport of secretory vesicles into the apical region where they fuse with a small area of the plasma membrane. The amount of secretion greatly exceeds the quantity of membrane required for growth. Mechanisms of membrane retrieval have recently been demonstrated and partially characterized using FM (Fei Mao) dyes or charged nanogold. Both these probes reveal that...

متن کامل

Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco.

Using the tip-growing pollen tube of Arabidopsis thaliana and Nicotiana tabacum as a model to investigate endocytosis mechanisms, we show that phosphatidylinositol-4-phosphate 5-kinase 6 (PIP5K6) regulates clathrin-dependent endocytosis in pollen tubes. Green fluorescent protein-tagged PIP5K6 was preferentially localized to the subapical plasma membrane (PM) in pollen tubes where it apparently ...

متن کامل

Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes.

Polarized organization of the cytoplasm of growing pollen tubes is maintained by coordinated function of actin filaments (AFs) and microtubules (MTs). AFs convey post-Golgi secretory vesicles to the tip where some fuse with specific domains of the plasma membrane (PM). Secretory activity is balanced by PM retrieval that maintains cell membrane economy and regulates the polarized composition of ...

متن کامل

Periodic increases in elongation rate precede increases in cytosolic Ca2+ during pollen tube growth.

Pollen tubes grown in vitro require an intracellular tip-high gradient of Ca2+ in order to elongate. Moreover, after about 2 h in vitro both the tip Ca2+ and the elongation rate of lily tubes begin to oscillate regularly with large amplitudes. This raises the question of the phase relation between these two oscillations. Previous studies lacked the temporal resolution to accurately establish th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017